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ABSTRACT
A stochastic model is derived from wind stress and bottom pressure gauge data to examine the

response of the Antarctic Circumpolar Current (ACC) transport to wind stress forcing. A general
method is used to estimate the drift and diffusion coefficients of a continuous stationary Markovian
system. As a first approximation, the response of the ACC to wind stress forcing can be described by
a multivariate Ornstein-Uhlenbeck process: Gaussian red noise wind stress drives the evolution of
the ACC transport, which is damped by a linear drag term. The model indicates that about 30(�10)%
of ACC variability is directly driven by the wind stress. This stochastic model can serve as a null
hypothesis for studies of wind driven ACC variability.

A more accurate stochastic description of the wind stress over the Southern Ocean requires a
multiplicative noise component. The variability of the wind stress increases approximately linearly
with increasing wind stress values. A multiplicative stochastic process generates a power-law
distribution rather than a Gaussian distribution. A simple stochastic model shows that non-Gaussian
forcing could have a significant impact on the velocity (or transport) probability density functions
(PDFs) of the wind-driven circulation. The net oceanic damping determines whether the distribution
of the oceanic flow is Gaussian (small damping) or resembles the distribution of the atmospheric
forcing (large damping).

1. Introduction

Stochastic differential equations (SDEs) offer a useful formalism for describing the
nonlinear dynamics of the atmosphere and ocean over a wide range of scales. The general
idea of stochastic climate models was introduced by Hasselmann (1976) and is based on
the Brownian motion analog: the observed red spectrum of oceanic fluctuations is a
consequence of the amplification of low-frequency weather fluctuations. Stochastic cli-
mate models have been successful in describing ocean variability within a broad frequency
band (see e.g., Imkeller and von Storch, 2001).

Despite the fact that stochastic models have been successful in providing a null
hypothesis for tropical and mid-latitude oceanic variability, they have been used only
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rarely to interpret Southern Ocean variability. In one example, Weisse et al. (1999) studied
the stochastically forced variability of the Antarctic Circumpolar Current (ACC) using a
coarse resolution ocean general circulation model (OGCM). The goal of the present study
is to investigate the stochastic properties of wind-driven ACC transport variability by
means of an empirical stochastic model.

The mechanisms by which winds drive the ACC transport have been the subject of
extensive debate. The debate focuses on two viewpoints: as first suggested by Munk and
Palmén (1951) the wind stress over the ACC might be balanced by topographic form stress.
In contrast Stommel (1957) proposed that the ACC transport might be controlled by a
Sverdrup balance. Rintoul et al. (2001) review recent work on the subject. The variations
of ACC transport in relation to winds have been studied by a number of authors (e.g.,
Wearn and Baker, 1980; Hughes et al., 2000). More recently, Gille et al. (2001) used
bottom pressure records from Drake Passage to show that transport fluctuations appear to
be driven by the wind stress rather than wind stress curl. Our analysis will revisit the BPR
observations, by fitting stochastic models to the observed time series, using methods that
have been tested for other components of the climate system (see e.g., von Storch and
Zwiers, 1999).

Most stochastically forced ocean models, whether simple or complex, introduce the
atmospheric stochastic forcing as Gaussian white or red noise. Thus, in the models the
strength of the atmospheric noise is held constant and does not depend on the state of the
system. In nature, the strength of the noise may also depend on the state of the atmosphere
itself, in which case the stochastic atmospheric forcing can be modeled as multiplicative
noise. Sura (2003) showed that a complete stochastic description of mid-latitude sea
surface wind observations requires a multiplicative (or state-dependent) white noise term.
Physically, this indicates that the variability of mid-latitude winds increases with increas-
ing wind speed. In spite of the observational evidence for multiplicative noise, the impact
of multiplicative stochastic forcing on ocean models has not been explored extensively.

In this study, an empirical stochastic model is derived from wind stress and bottom
pressure gauge data to examine the response of the ACC transport to wind stress forcing.
Section 2 introduces the method, in which the drift and diffusion coefficients of a
continuous stationary Markovian system are estimated from the observations, using a
relatively new technique. The data are described in Section 3. Results presented in Section
4 are based on a first approximation, which neglects multiplicative noise and holds the
stochastic atmospheric forcing constant. In Section 5 we explore the impact of more
realistic multiplicative noise on the wind-driven ACC. Finally, Section 6 provides a
summary and a discussion.

2. Method

In this study a general method is used to estimate the drift and diffusion coefficients of
the Fokker-Planck equation for a continuous stationary Markovian stochastic process
(Siegert et al., 1998; Friedrich et al., 2000a,b; Gradis̆ek et al., 2000). Markovian systems
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can be used to represent a wide class of physical processes. We consider the dynamics of a
n-dimensional system governed by the following Itô-SDE:

dx
dt

� A�x� � B�x�� (1)

with the n � n matrix B. A represents the deterministic component of the state vector x,
and B(x)� is the stochastic component. Equations similar to (1) are commonly used in
oceanography to represent oceanic float or drifter dispersion, where x represents the
particle trajectory (e.g., Berloff and McWilliams, 2002). In the case of floats Ai measures
the background flow field. The term B is constant if the variance of the float or drifter
displacements is invariant in space and time.

In the discussion that follows the noise components �i are assumed to be independent
Gaussian white noise processes:

��i�t�� � 0, ��i�t��i�t��� � 	�t � t��, (2)

where � � � denotes the averaging operator. This is consistent with the formalism of the Itô
stochastic calculus, which approximates discrete uncorrelated fluctuations as continuous
white noise. Atmosphere and ocean processes are often represented by the Stratonovich
calculus, in which rapidly fluctuating quantities with small but finite correlation times are
parameterized as white noise. This paper makes use of the Itô interpretation, because this
allows us to interpret the deterministic term A(x) as the effective drift and because it
produces tractable equations that allow us to explore the role of stochastic processes in
driving the ocean. For a detailed discussion of stochastic integration and the differences
between Itô and Stratonovich SDEs see, for example, Horsthemke and Lefever (1984) or
Gardiner (1985). In both calculi, the matrix B(x) describes the variability of the state vector
x as a function of the state itself. For example, a state-dependent noise term is required to
model the gustiness of synoptic sea surface winds (Sura, 2003).

The probability density function p(x, t) (PDF) of the Itô-SDE (1) is governed by the
corresponding Fokker-Planck equation (e.g., Gardiner, 1985; Horsthemke and Lefever,
1984; Paul and Baschnagel, 1999):


p�x, t�


t
� ��

i





xi
Aip�x, t� �

1

2 �
i,j


2


xi
xj
�BBT�ijp�x, t�. (3)

The Fokker-Planck equation describes the conservation of the probability density p(x, t) of
the system described by the SDE. The first term on the right describes the dynamics of the
deterministic system and is called the deterministic drift. The second term causes the
diffusion of the system.

Equations for the second moments of x, representing variance or Reynolds stresses for
example, can be obtained by multiplying the Fokker-Planck equation (3) by xpxq and
integrating over the domain of the system. That is,
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�xpxq�


t
� �Apxq� � �Aqxp� � �

i

�BpiBqi�. (4)

This equation is known as the generalized fluctuation-dissipation relation (GFDR) of the
system (see e.g., Penland, 1996). The GFDR relates the variance of the stochastic
fluctuations to the magnitude of the dissipation.

The deterministic and stochastic parts of (3) can be determined directly from data by
using their statistical definitions:

A�x� � lim
�t30

1

�t
�X�t � �t� � x��X�t�
x (5)

B�x�BT�x� � lim
�t30

1

�t
��X�t � �t� � x��X�t � �t� � x�T��X�t�
x (6)

where X(t � �t) is a solution (a single stochastic realization) of the SDE (1) with the
initial condition X(t) 
 x at time t. The data define a state space representing every
observed value of x. Deterministic and stochastic parts of the underlying dynamics can be
estimated at every point x at which there are sufficient observations. In order to obtain an
estimate from discrete observations, the theoretical limit �t 3 0 is replaced by a
finite-difference approximation. Note that estimating the deterministic drift and stochastic
diffusion parameters from discretely sampled data is fraught with the potential for error.
See Sura (2003) or Sura and Barsugli (2002) for the error estimation in the case of a finite
time increment �t.

Analytical functions can be fitted to the empirical estimates of A(x) and B(x)BT(x) to
derive model equations describing the system under consideration. In order to verify the
results, the estimated functions A(x) and B(x)BT(x) can be inserted into the Fokker-Planck
equation (3), and the resulting PDF can be compared with the PDF obtained directly from
the data.

Note that B(x)BT(x) rather than B(x) is estimated from data. In general it is impossible
to find a unique expression for B(x) in the multivariate case. However, in the univariate
case B( x) 
 �B( x)2. The sign of the square root is arbitrary because B( x) is multiplied
by Gaussian white noise with zero mean. Thus, in the univariate case even the SDE (1) can
be used to test the estimates of A( x) and B( x) by simply comparing the properties (e.g.,
moments, spectra etc.) of the original time series with the properties of the time series
obtained by integrating (1).

The technique described here has been successfully applied to a wide class of problems.
For example, Friedrich and Peinke (1997a,b) and Renner et al. (2001) describe statistical
properties of a turbulent cascade. Friedrich et al. (2000a) quantify deterministic and
stochastic influences on the foreign exchange market. Geophysical examples are provided
by Ditlevsen (1999), who fitted a Fokker-Planck equation to ice core data, and Egger
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(2001), Egger and Jonsson (2002), and Sura (2003), who stochastically describe meteoro-
logical data sets.

3. Data

Here we examine the response of the ACC transport to wind stress forcing by analyzing
bottom pressure and wind reanalysis products within a stochastic framework. The data
used in this study have been used previously to study ACC transport variability in relation
to wind forcing (e.g. Gille, 1999; Gille et al., 2001). Bottom pressure gauges were
deployed on either side of Drake Passage from November 1992 through November 1997
by Proudman Oceanographic Laboratory. As in previous studies, here we infer geostrophic
transport fluctuations from the time-varying pressure difference across Drake Passage,
shown in Figure 1. The original data were sampled at 15 min or hourly intervals, filtered to
remove the semidiurnal/diurnal tidal signal, and subsampled at 12-hour intervals. Gaps in
the pressure difference data are filled by linear interpolation.

Winds are represented by European Centre for Medium-Range Weather Forecasts
(ECMWF) reanalysis for the 5-year period between 1992 and 1997. The wind stress and

Figure 1. Time series of the data used in this study: (a) Bottom pressure difference across Drake
Passage, (b) averaged wind stress, and (c) averaged wind stress curl. For the winds, original data
are shaded, and data filtered to retain only time periods longer than 10 days are solid.
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the wind stress curl are averaged zonally over the full Southern Ocean and meridionally
between 50S and 60S, corresponding to the approximate latitude band of the ACC at Drake
Passage. Figure 1 shows the time series for wind stress and wind-stress curl. Note that the
averaged zonal wind stress is very rarely negative. In the following all time series are
normalized to have zero mean and unit standard deviation. For a more detailed description
and a coherence analysis of the data see Gille et al. (2001).

4. Empirical stochastic models of the ACC

The mechanisms controlling ocean response to wind forcing depend on both the wind
and the ocean transport. For this two component system, the governing SDE is

dx1

dt
� A1�x1, x2� � �1�1

dx2

dt
� A2�x1, x2� � �2�2

(7)

where x1 represents the wind stress in Section 4a, and wind stress curl in Section 4b, and x2

is the pressure difference across Drake Passage. A number of studies have shown that
atmospheric variability can be modeled by a stochastic process (e.g., Egger and Jonsson,
2002; Sura, 2003). The deterministic part represents the net slowly varying motion, which
is excited by fast varying synoptic disturbances that are effectively stochastic. The same
idea can be applied to the oceanic motion, where eddies, waves and other fast varying
processes are parameterized by the noise component. This simple representation of the real
world omits some important physical processes. Nevertheless, despite (or because of) their
simplicity, empirical stochastic models have been proven to be useful diagnostic and
forecasting tools (Ditlevsen, 1999; Egger, 2001; Egger and Jonsson, 2002; Sura, 2003; von
Storch and Zwiers, 1999). Our findings show that the oceanic transport does not affect the
atmospheric wind field, so that A1( x1, x2) 
 A1( x1). Note that (7) and all subsequent
equations are dimensionless because the data are normalized.

In our analysis, we make two assumptions. First, the atmospheric wind field is expected
to be unaffected by oceanic noise, and vice versa. Based on this assumption, the governing
equations are simplified by assuming that the matrix B is diagonal with elements �1 and �2.
As discussed later, this assumption can be tested a posteriori by using the GFDR (4).
Second, in this section the noise term is not treated as a function of the state of the system.
This means that the matrix B is assumed to be constant. The first assumption is physically
reasonable, but the second assumption is an approximation that is not generally valid. As
Sura (2003) has shown, a proper stochastic description of synoptic midlatitude sea surface
winds requires a multiplicative noise component. The advantage of representing the wind
stress as a red-noise process with constant B is that the resulting SDE (7) can then be
handled analytically. The impact of a more realistic stochastic wind stress forcing on the
wind driven ACC variability will be discussed in Section 5.
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To evaluate A1, A2, �1, and �2 numerically, using the two-dimensional versions of Eqs.
(5) and (6), the interval spanned by the data is divided into 24 � 24 equal bins. (Sensitivity
experiments with different numbers of bins were performed as well, but the general results
discussed below did not change.) Because in this section the stochastic terms are treated as
constants, the results of Eq. (6) are averaged to obtain �1 and �2. Then, �1 and �2 are
cross-checked by comparing the direct numerical estimates with the results obtained from
the GFDR. The smallest possible discrete time step of half a day is used for �t in the
finite-difference approximation. Since the method assumes that the data are Markovian, we
verify that the method yields stable and physically reasonable results for different discrete
time steps �t. A lack of convergence could indicate that the process had non-Markovian
properties; however, in this study the results converge stably as �t decreases, and the
results are therefore consistent with the assumption that the data are Markovian. In
particular, the results are approximately the same for time steps of �t 
 12, 24, and 36 h.
That is, the error terms proportional to �t (see Sura, 2003; Sura and Barsugli, 2002) are
small and negligible for those time steps. The estimates diverge for time steps equal to or
larger than 48 h.

In the following standard errors (standard deviation/�N) are used to quantify the
uncertainties of the estimated parameters and related quantities.

a. Bottom pressure versus wind stress

The deterministic part of the wind stress time series, A1( x1), is shown in Figure 2. The
term A1( x1) decreases with increasing values of x1, meaning that it acts to damp the wind
stress, and can be approximated by a linear function. This means that as a first approxima-
tion the wind stress can be represented as a univariate Ornstein-Uhlenbeck process. The
decorrelation time scale is the inverse of the (dimensional) damping coefficient, which
therefore is the typical damping time scale of the system under consideration. In these data
the atmospheric decorrelation time scale appears to be about 10 days for the zonally and
meridionally averaged wind stress. The local decorrelation time scale is much shorter,
about 1 day (Sura, 2003).

The estimated function A2( x1, x2) is shown in Figure 3a, the related standard error is
shown in Figure 3b. The uncertainties are relatively large: the standard error is about
0.05–0.1 for most of the points. Because of the large uncertainty, we performed tests in
order to see whether the same results could be found in random, uncorrelated time series.
Our tests showed that the qualitative structure of A2( x1, x2) (discussed below) could not be
reproduced by such a random process. As a second test of the robustness of the results, we
compared the original data with the time series obtained by integrating the SDE. This
analysis concentrates on the qualitative aspects of the results which are robust and
physically consistent. The deterministic part of the oceanic time series consists of a forcing
and damping term. The forcing can be identified by the overall positive gradient of A2( x1,
x2) in the direction of x1, whereas the damping is due to the dominant negative gradient in
the direction of x2. The function A2( x1, x2) can be approximated by a planar fit. Assuming
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a linear fit to the entire deterministic drift (see Table 1) the corresponding two-dimensional
SDE is

dx1

dt
� �ax1 � �1�1

(8)
dx2

dt
� �bx2 � cx1 � �2�2.

See the Appendix for more details on multivariate Ornstein-Uhlenbeck processes such as
this.

At this point the assumption that the matrix B is diagonal can be tested by a
straightforward application of the GFDR (4). If the linear deterministic drift in (8) is
written as a matrix A multiplied by the vector x, the stationary GFDR becomes BBT 

�AC � CAT, where C denotes the covariance matrix. Thus, BBT can be determined from
the deterministic drift and the covariance matrix obtained from data. Inserting the drift and
the covariance matrix into the GFDR reveals that the off-diagonal elements of BBT are
negligible relative to the diagonal elements: BB1,2

T 
 BB2,1
T 
 0.00 � 0.01, BB1,1

T 

0.20 � 0.02, BB2,2

T 
 0.06 � 0.02. The ratio of the off-diagonal elements to the
smallest diagonal element is BB1,2

T /BB2,2
T 
 0.00 � 0.17. Therefore, the noise terms are

uncorrelated to a good approximation, and B can be treated as a diagonal matrix.

Figure 2. The estimated deterministic drift A1( x1) for the wind stress x1. The dashed line shows the
actual estimated function. The solid line is a linear fit: A1( x1) 
 �0.10(�0.01) x1. The error
bars indicate � one standard error.
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Since the noise matrix B is diagonal, the covariance matrix of (8) can be evaluated
analytically to calculate the spectra and cross-spectra by Fourier transforming the appropri-
ate elements of the covariance matrix: see (A.6), (A.7), and (A.8). Using the GFDR (or the

Figure 3. (a) The estimated deterministic drift A2( x1, x2) for the bottom pressure difference x2. The
contour and shading interval is 0.1. A planar fit yields: A2( x1, x2) 
 0.04(�0.01) x1 �
0.04(�0.01) x2. (b) The standard error of the estimated deterministic drift A2( x1, x2). The
contour and shading interval is 0.02.
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covariance matrix) and assuming stationary statistics, the first moments of the variables x1

and x2 can be obtained:

�x1
2� �

�1
2

2a

�x2
2� �

c

b
�x1x2� �

�2
2

2b
�

c2�1
2

2ab�a � b�
�

�2
2

2b
(9)

�x1x2� �
c

�a � b�
�x1

2� �
c�1

2

2a�a � b�
.

The estimated parameters are summarized in Table 1. These parameters and the equation
for �x2

2� together indicate that about 30(�10)% of ACC variability is driven by the wind
stress, whereas about 70(�20)% is due to processes that are not included in our simple
model, and are, therefore, parameterized as noise. Note that within our simple model the
coupling of the wind stress and the ACC transport, that is the covariance �x1x2�, depends
linearly on the variance �x1

2� of the wind forcing.
The parameters derived in (8) can be used to estimate the spectral coherence of the wind

with ACC transport and the phase difference between the two systems. Figure 4 shows the
results of this estimation. The negative values of the phase � indicate that the wind stress
leads the oceanic transport. Figure 4 indicates that for time periods longer than about
100 days, wind stress and transport have constant and relatively high coherence. The
coherence rapidly decreases for periods below 100 days. In the high coherence regime the
oceanic transport lags the atmospheric forcing by about 60° for periods of 100 days; the
phase lag becomes zero for very low frequencies (or long periods). Deterministic models
suggest that at high frequencies wind should accelerate the ocean velocity, so that ACC
transport lags wind by 90°. However, because of the low coherence at high frequencies,
phase lags near 90° are not observed within the stochastic framework.

We test the estimates of A1( x1), A2( x1, x2), �1, and �2 obtained by integrating (8)
against the original bottom pressure difference time series. This is done by comparing the

Table 1. Parameters (� one standard error) of the stochastic model (8): Wind stress and wind stress
curl versus bottom pressure difference. Note that for the “curl versus bottom pressure” model �1

2

and �2
2 are not defined, because in that case the matrix B is nondiagonal.

Parameter
Stress versus

bottom pressure
Curl versus

bottom pressure

a 0.10 � 0.01 0.24 � 0.01
b 0.04 � 0.01 0.04 � 0.01
c 0.04 � 0.01 0.03 � 0.01
�1

2 0.18 � 0.02 —
�2

2 0.05 � 0.01 —
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spectra and histograms of the original data with the corresponding “artificial” data (see Fig.
5). SDE (8) is solved by the stochastic Euler scheme (see e.g., Kloeden and Platen, 1992).

Figure 5a shows the spectra of the original data and of the artificial data simulated by the
stochastic model. Both indicate red noise behavior (with slopes � ��2), as expected from
the stochastic climate scenario proposed by Hasselmann (1976). A striking difference can
be seen in the spectra at very high frequencies. The stochastic model does not reproduce
the steep dip of the original data at frequencies of about 0.3 cycles per 0.5 days. The

Figure 4. (a) Coherence and (b) phase spectra (solid lines) of the stochastic process (8) fitted to wind
stress and bottom pressure difference. For clarity, the period is given in dimensional units, even if
the data are nondimensional. The dotted lines indicate the error margins (� one standard error).
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low-pass filter used to remove tidal signals has removed high-frequency energy from the
observations, but that effect is not reproduced by the stochastic model. It is known that
Markov models are not capable of reproducing steep spectral dips at very high frequencies
(DelSole, 2000). Because by construction both the original and the artificial data have the
same overall variance, the spectra differ for frequencies below about 0.3 cycles per
0.5 days, even though the slopes are identical.

Figure 5. (a) Spectra and (b) histograms of the original ACC transport data from bottom pressure
(solid lines) and the corresponding artificial data obtained by the SDE using the estimated
parameters (dashed lines). The spectral slopes � ��2 and � �0 are indicated by the thin solid lines.
For clarity, the frequency is given in dimensional units, even if the data are nondimensional.
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Figure 5b shows the histograms of the original data and of the linear stochastic model.
Of course, the linear stochastic model produces a Gaussian distribution. Even the bottom
pressure data are indistinguishable from a Gaussian distribution on the basis of the
Kolmogorov-Smirnov test up to the 95% significance level. Nevertheless, more sophisti-
cated methods like the Anderson-Darling or the Shapiro-Wilk test (NIST/SEMATECH,
2002) reveal that the bottom pressure data are actually non-Gaussian at the 99% signifi-
cance level. The results of the different tests show that the data are weakly non-Gaussian,
and that these subtle effects are not reproduced by the linear stochastic model.

To summarize, the linear stochastic model reproduces the general spectral characteris-
tics of the original data. Furthermore, the stochastic method yields results that are
qualitatively similar to those obtained by Gille et al. (2001) using coherence analysis. The
linear stochastic model does not reproduce a constant phase lag of about 20° observed by
Gille et al. (2001). This may occur because the constant phase lag observed in the data is a
nonlinear effect that is neglected within the linear approximation of the deterministic term
A2( x1, x2). Nevertheless, the linear stochastic model reproduces the observational result
indicating that the coherence increases with increasing period.

b. Bottom pressure versus wind stress curl

In this section, we explore the relation of ACC transport variability to wind stress curl. In
this case, the term A1( x1) acts to dampen the wind stress curl nearly linearly (not shown),
with a damping time scale of about 4–5 days. The estimated function A2( x1, x2) (not
shown) is qualitatively similar to the results based on wind stress shown in Figure 3: the
deterministic part of the oceanic time series consists of a forcing and damping term, and the
function A2( x1, x2) can again be approximated by a planar fit. See Table 1 for the
estimated deterministic parameters. Again, the assumption that the matrix B is diagonal
can now be tested by using the stationary GFDR BBT 
 �AC � CAT. However, inserting
the drift and the covariance matrix into the GFDR now reveals that the off-diagonal
elements of BBT are not negligible relative to the diagonal elements: BB1,2

T 
 BB2,1
T 


0.03 � 0.01, BB1,1
T 
 0.43 � 0.03, BB2,2

T 
 0.04 � 0.03. The ratio of the off-diagonal
elements to the smallest diagonal element is BB1,2

T /BB2,2
T 
 0.75 � 0.62. In this case the

matrix B is not diagonal and the assumption of uncorrelated noises in each dimension is not
valid. Thus, the correlation between curl and pressure is partly due to the covariance
structure of the noise terms. Because this spurious coupling due to the noise involves
another parameterized (and therefore unknown) mechanism, transport fluctuations appear
more likely to be driven by wind stress than wind stress curl.

c. The stochastic Wearn-Baker model

As a first approximation the response of the ACC to wind stress forcing can be
understood in terms of the stochastic version of the simple model introduced by Wearn and
Baker (1980). In their model the time evolution of the transport U(t) is simply due to the
wind stress �x(t) and a linear drag term scaled by b:
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U


t
� �bU � �x�t�. (10)

Wearn and Baker (1980) derived an analytic solution for a deterministic sinusoidal forcing
�x(t) 
 �0 exp(i�t). The solution of the “deterministic Wearn-Baker model” is

U�t� �
�0

�b2 � �2 exp�i�t � ��, (11)

where � 
 arctan(��/b). Therefore, in the sinusoidally forced deterministic case the
variance of the transport becomes

�U2�t�� �
��0

2

�b2 � �2�
. (12)

The previous results showed that the ocean transport appears to be driven by a stochastic
red noise wind stress forcing (neglecting the multiplicative character of the wind stress
forcing to be discussed in Section 5). The governing SDE for the wind stress is

d�x

dt
� �a�x � � (13)

with the Gaussian white noise �. The solution for the wind stress is

�x�t� � exp��at� �
0

t

exp�as�dW�s�. (14)

where dW is the incremental change of the Wiener process W. Using this red noise process
to force the model (10) the variance of the transport in the “stochastic Wearn-Baker model”
becomes

�U2�t�� �
��x

2�

�b2 � ab�
. (15)

Thus the variance in (15) resembles the variance from the Wearn-Baker model, (12), with
the deterministic frequency term, �2, replaced by the product of the inverse atmospheric
and oceanic decorrelation time scales ab.

5. The role of multiplicative noise

a. Multiplicative noise in stochastic forcing

This section examines how multiplicative wind forcing alters the linear stochastic
models derived in Section 4. The one-dimensional SDE to describe the wind stress data is
now written as
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dx1

dt
� A1�x1� � B1�x1��1 (16)

where x1 is the wind stress, A( x1) is the deterministic, and B1( x1)�1 the stochastic part. As
shown in Section 4a and in Figure 2, the deterministic term A1( x1) acts to dampen the wind
stress and can be approximated by a linear function. Note that the multiplicative noise
B1( x1) can be calculated directly from (6) at every point x1 whose neighborhood is visited
often enough by the data trajectory. In the previous section the average was used to neglect
the state dependence of the noise. In this section, the function B1( x1) is no longer held
constant, but depends on the state of the system, as shown in Figure 6. The amplitude of the
white noise forcing increases approximately linearly with increasing wind stress values.
Therefore, the behavior of the multiplicative noise in the averaged wind stress data is
qualitatively consistent with the results obtained by Sura (2003), who used local winds to
show that the variability of midlatitude winds increases with increasing wind speed. His
results suggested that a more complete stochastic description of the wind stress data would
require a state dependent white noise forcing term. As a result of this state-dependent
forcing, an Ornstein-Uhlenbeck process is not sufficient to describe the wind stress data
within a stochastic framework.

Figure 6. The estimated noise B1( x1) for the wind stress x1. The dashed line shows the actual
estimated function. The solid line is a linear fit: B1( x1) 
 0.044(�0.005) x1 � 0.42(�0.005).
The error bars indicate � one standard error.
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b. Stochastic Wearn-Baker driven by a multiplicative wind stress forcing

Most stochastically forced ocean models implement the atmospheric stochastic forcing
as Gaussian white or red noise. In the red noise case, the atmosphere is often modeled by a
univariate Ornstein-Uhlenbeck process such as (13). There, the strength of the atmospheric
noise is held constant and does not depend on the state of the system. However, as shown in
the previous section, a more accurate stochastic description of the wind stress data requires
a state dependent white noise forcing term. It is well known that a multiplicative stochastic
process generates a power-law distribution in contrast with the Gaussian distribution of an
Ornstein-Uhlenbeck process (e.g., Schenzle and Brand, 1979; Succi and Iacono, 1986;
Sakaguchi, 2001). In this section the stochastic Wearn-Baker model serves as a toy-model
to illustrate the effect of a more realistic non-Gaussian wind forcing on the variability of
the oceanic circulation. We will consider the following stochastic model:

d�

dt
� �a� � �2M ����M � �2D �D

(17)
dU

dt
� �bU � �

with Gaussian white noise satisfying

��M�t��M�t��� � 	�t � t��, ��D�t��D�t��� � 	�t � t��. (18)

M and D are constants governing the strength of the additive and multiplicative noise
terms. The first equation models the wind stress � by a simple linear damping term, and a
combination of a state dependent and constant noise terms. The ocean transport U is driven
solely by the stochastic wind stress and retarded by a linear damping term. This simplistic
representation of the ocean parameterizes the fact that parts of oceanic variability are
driven by the wind, whereas other effects tend to dampen the oceanic motions. Thus, this
simple model can serve as a toy-model to illustrate the basic effect of a non-Gaussian wind
forcing on the variability of the oceanic circulation.

The stationary PDF of the wind stress � has the form (Sakaguchi, 2001):

p��� � ��D � M�2��� (19)

with � 
 (a � 2M)/ 2M. The normalization constant � is given by:

� �
M1/2D��1/2

��1/2, � � 1/2�
�

M1/2D��1/2����

��1/2���� � 1/2�
(20)

where �( x, y) is the beta function, and �( x) is the gamma function: �( x, y) 

�( x)�( y)/�( x � y). The variance of the wind stress � can be calculated as

�
��

�

�2pd� � ��2� �
D

a � M
. (21)
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Figure 7 shows distributions p(�) as defined by Eqs. (19) and (20) for a 
 1, D 
 1, with
different strengths of the multiplicative noise M. For M 3 0, the distribution becomes
Gaussian with the variance D/a. The multiplicative noise causes the tails of the distribution
to be heavier than they would be in the corresponding Gaussian distribution.

For the limits of very large and small b the probability distribution of U can be
determined analytically. For large b the time derivative of U can be neglected:

U �
�

b
(22)

Therefore,

dU

dt
�

1

b

d�

dt
� �aU � �2M �U��M � �2D

�D

b
. (23)

Thus, in (19) and (20) we substitute D/b2 in place of D to obtain the distribution of U:

p�U� � ��D

b2 � MU2���

(24)

Figure 7. Stationary wind stress probability distributions p(�) given by Eqs. (19) and (20) for a 
 1,
D 
 1, and different strengths of the multiplicative noise: M 
 0.5 (solid line), M 
 0.25 (long
dashed line), M 
 0.1 (short dashed line), and M 3 0 (dotted line). For M 3 0 the distribution
becomes Gaussian with the variance D/a.
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with the normalization constant � given by

� �
M1/2�D/b2���1/2

��1/2, � � 1/2�
. (25)

Thus, when friction b is large, ocean transport is expected to have a power-law distribution.
For small b, dU/dt 
 � so U 
 ¥j �j�t, and the central limit theorem applies. That

means, the distribution p(U) becomes Gaussian with the variance �U2�, which is
determined by the stationary version of the GFDR (4):

�U2� �
��2�

b�a � b�
�

D

�a � M�b�a � b�
. (26)

For intermediate b the distribution p(U) will be somewhere in between the Gaussian and
the power-law. More precisely, the damping b determines whether the PDF of the
wind-driven oceanic flow is Gaussian (small damping) or resembles the distribution of the
atmospheric forcing (large damping). This crude model of the wind-driven ocean circula-
tion has interesting implications. Wind PDFs have been observed to be non-Gaussian
almost everywhere. In contrast, ocean velocity PDFs are Gaussian throughout most of the
ocean, except in a few specific regions, such as the Gulf Stream, which are usually
associated with high eddy kinetic energy (Llewellyn Smith and Gille, 1998; Gille and
Llewellyn Smith, 2000; Bracco et al., 2000). If the effective dissipation b varies regionally
depending on ocean eddy kinetic energy, then this model suggests that we should expect
velocity PDFs to have different shapes in different locations.

6. Summary and discussion

An empirical stochastic model has been derived from wind stress and bottom pressure
gauge data in order to examine the response of the Antarctic Circumpolar Current (ACC)
transport to wind stress forcing. A general method is used to estimate the drift and diffusion
coefficients of a continuous stationary Markovian system. As a first approximation, the
response of the ACC to wind stress forcing can be described by a multivariate Ornstein-
Uhlenbeck process: Gaussian red noise wind stress drives the evolution of the ACC
transport that is damped by a linear drag term. The spectrum of the ACC transport
fluctuations is red, as expected from the stochastic climate scenario proposed by Hassel-
mann (1976). The empirical model shows nearly the same behavior as revealed by
coherence analysis of the same data set (Gille et al., 2001). The linear stochastic model
does not reproduce a constant phase lag of about 20° between wind stress and ACC
transport as observed by Gille et al. (2001), but rather shows the classical frequency
dependent phase (Wearn and Baker, 1980). The constant phase lag observed in the data is
believed to be due to nonlinear effects that are not captured by the linear approximation.
Despite this deficiency, the stochastic model can serve as a null hypothesis for studies of
wind-driven ACC variability. That is, the stochastic Wearn-Baker model is actually the
simplest null hypothesis that describes wind-driven ACC variability.
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In light of Hasselmann’s theory this is actually not a very surprising result, though it
reinforces the importance of stochastic climate models. Much more important is the fact
that stochastic descriptions of Southern Ocean wind stress are improved by using a
multiplicative noise component. The variability of the wind stress increases with increas-
ing wind stress values. This behavior has been discussed in more detail by Sura (2003).
Most importantly, a multiplicative stochastic process generates a power-law distribution
rather than a Gaussian distribution.

Using a simple linear stochastic model, it is shown that non-Gaussian forcing may have
a significant impact on the velocity (or transport) PDFs of the wind driven ocean
circulation. If the oceanic damping is small, the ocean has a very long memory, and
oceanic velocities will represent a summation of many independent wind forcings. Then, as
a result of the central limit theorem, the ocean velocities should have a Gaussian
distribution, provided that the wind forcing PDF has finite variance. On the other hand, if
the oceanic damping is large, the ocean has little memory, and ocean velocities will reflect
wind velocities. In this case the wind driven velocities will have distributions like the wind
forcing distributions. The real ocean must lie somewhere in between these extremes,
sometimes showing Gaussian PDFs and sometimes PDFs that resemble those of the wind
forcing. Note that in the real ocean velocity PDFs can also be non-Gaussian due to the
nonlinear behavior of the ocean itself. Nevertheless, the implications of these results are
clear: in order to interpret observed oceanic velocity PDFs in a physical meaningful sense,
the impact of a non-Gaussian wind forcing on the ocean circulation will need to be
explored in the future using more complicated models.
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APPENDIX

Multivariate Ornstein-Uhlenbeck process

In this Appendix the properties of the multivariate Ornstein-Uhlenbeck process are
discussed briefly. For a more comprehensive discussion see e.g. Gardiner (1985),
Horsthemke and Lefever (1984), or Kloeden and Platen (1992).

The multivariate Ornstein-Uhlenbeck process is defined by the Itô SDE

dx
dt

� Ax � B�, (A.1)

where A and B are constant n � n matrices. The stochastic components �i are assumed to
be independent Gaussian white noise processes:

2003] 331Sura & Gille: Wind-driven Southern Ocean variability



��i�t�� � 0, ��i�t��i�t��� � 	�t � t�� (A.2)

where � � � denotes the averaging operator. Eq. (A.1) can be rewritten in terms of a
n-dimensional Wiener process W:

dx � Axdt � BdW. (A.3)

The generalized derivative of a Wiener process is Gaussian white noise �. Common
examples of Wiener processes are Brownian motion or the continuous random walk. The
solution of this SDE is given by (see e.g., Gardiner, 1985; Horsthemke and Lefever, 1984;
Kloeden and Platen, 1992)

x�t� � exp�At�x�0� � �
0

t

exp�A�t � t���BdW�t��. (A.4)

The solution requires the explicit knowledge of the matrix exponential function exp(At).
The corresponding covariance matrix is

�x�t�xT�s�� � exp�At��x�0�xT�0�� exp�As�

� �
0

min�t,s�

exp�A�t � t���BBT exp�AT�s � t���dt�.

(A.5)

The integral can be explicitly evaluated in certain special cases, as long as the matrix
exponential function is known (see e.g. Braun (1993) for techniques to determine explicit
expressions for matrix exponential functions). The spectra and cross-spectra can be
evaluated by Fourier transforming the appropriate elements of the covariance matrix.

Using the stochastic process described by (9), the elements of the covariance matrix
become:

�x1�t�x1�s�� �
�1

2

2a
exp��a�t � s�� (A.6)

�x1�t�x2�s�� �
�1

2c

2a�b � a�
exp��a�t � s�� �

�1
2c

�b2 � a2�
exp��at � bs � �a � b� min�t, s��

(A.7)

�x2�t�x2�s�� �
�1

2c2

2a�b � a�2 exp��a�t � s�� �
�1

2c2

�a � b��b � a�2 exp��at � bs� �a � b� min�t, s��

�
�1

2c2

�a � b��b � a�2 exp��bt � as� (a�b) min�t, s�� (A8)

�
�1

2c2

2b�b � a�2 exp��b�t � s�� �
�2

2

2b
exp��b�t � s��.

Note that the covariance matrix is of course symmetric: �x1(t) x2(s)� 
 �x2(t) x1(s)�.
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